Couple et Vitesse d’un Moteur Hydraulique

Détermination du Couple et de la Vitesse d'un Moteur Hydraulique

Détermination du Couple et de la Vitesse d'un Moteur Hydraulique

Comprendre le Moteur Hydraulique

Un moteur hydraulique est un actionneur rotatif qui convertit l'énergie hydraulique (fournie par une pompe sous forme de pression et de débit) en énergie mécanique de rotation (couple et vitesse). Il est en quelque sorte le "miroir" d'une pompe hydraulique. Le couple généré par le moteur est proportionnel à la pression du fluide et à sa cylindrée, tandis que sa vitesse de rotation est proportionnelle au débit qui le traverse. Ces actionneurs sont appréciés pour leur rapport puissance/poids très élevé.

Données de l'étude

On analyse un moteur hydraulique à pistons axiaux alimentant un treuil.

Caractéristiques du moteur et du circuit :

  • Cylindrée du moteur (\(V_c\)) : \(50 \, \text{cm}^3/\text{tr}\)
  • Pression d'alimentation (\(P\)) : \(180 \, \text{bar}\)
  • Débit d'alimentation (\(Q\)) : \(60 \, \text{L/min}\)
  • Rendement mécanique (\(\eta_m\)) : \(0.93\)
  • Rendement volumétrique (\(\eta_v\)) : \(0.95\)
Schéma de Principe d'un Moteur Hydraulique
Entrée (P, Q) Sortie (T) Couple (C), Vitesse (N)

Questions à traiter

  1. Calculer le couple théorique (\(C_{\text{th}}\)) développé par le moteur.
  2. Calculer le couple réel (\(C_{\text{réel}}\)) disponible sur l'arbre de sortie.
  3. Calculer la vitesse de rotation théorique (\(N_{\text{th}}\)) du moteur.
  4. Calculer la vitesse de rotation réelle (\(N_{\text{réel}}\)) de l'arbre.

Correction : Détermination du Couple et de la Vitesse d'un Moteur Hydraulique

Question 1 : Calcul du Couple Théorique (\(C_{\text{th}}\))

Principe :

Le couple théorique d'un moteur hydraulique est le moment de force généré par la pression du fluide agissant sur les éléments internes (pistons, palettes, etc.). Il est directement proportionnel à la cylindrée du moteur et à la différence de pression entre l'entrée et la sortie. La formule de base relie ces grandeurs via un facteur \(2\pi\).

Formule(s) utilisée(s) :
\[ C_{\text{th}} = \frac{V_c \cdot P}{2\pi} \]
Données et Conversion :
  • Cylindrée (\(V_c\)) : \(50 \, \text{cm}^3/\text{tr} = 50 \times 10^{-6} \, \text{m}^3/\text{tr}\)
  • Pression (\(P\)) : \(180 \, \text{bar} = 180 \times 10^5 \, \text{Pa}\)
Calcul :
\[ \begin{aligned} C_{\text{th}} &= \frac{(50 \times 10^{-6} \, \text{m}^3/\text{tr}) \times (180 \times 10^5 \, \text{Pa})}{2\pi} \\ &= \frac{900}{2\pi} \, \text{N} \cdot \text{m} \\ &\approx 143.24 \, \text{N} \cdot \text{m} \end{aligned} \]
Résultat Question 1 : Le couple théorique développé par le moteur est de \(C_{\text{th}} \approx 143.2 \, \text{N} \cdot \text{m}\).

Question 2 : Calcul du Couple Réel (\(C_{\text{réel}}\))

Principe :

Le couple réellement disponible sur l'arbre est inférieur au couple théorique à cause des pertes par frottement (mécaniques). Le rendement mécanique (\(\eta_m\)) quantifie ces pertes. Le couple réel est le produit du couple théorique et du rendement mécanique.

Formule(s) utilisée(s) :
\[ C_{\text{réel}} = C_{\text{th}} \cdot \eta_m \]
Calcul :
\[ \begin{aligned} C_{\text{réel}} &= 143.24 \, \text{N} \cdot \text{m} \times 0.93 \\ &\approx 133.21 \, \text{N} \cdot \text{m} \end{aligned} \]
Résultat Question 2 : Le couple réel disponible en sortie d'arbre est d'environ \(133.2 \, \text{N} \cdot \text{m}\).

Question 3 : Calcul de la Vitesse de Rotation Théorique (\(N_{\text{th}}\))

Principe :

La vitesse de rotation théorique est la vitesse qu'atteindrait le moteur si tout le débit fourni servait à créer le mouvement (aucune fuite interne). Elle est calculée en divisant le débit d'alimentation par la cylindrée du moteur.

Formule(s) utilisée(s) :
\[ N_{\text{th}} = \frac{Q}{V_c} \]
Données et Conversion :
  • Débit (\(Q\)) : \(60 \, \text{L/min} = 0.060 \, \text{m}^3/\text{min}\)
  • Cylindrée (\(V_c\)) : \(50 \, \text{cm}^3/\text{tr} = 50 \times 10^{-6} \, \text{m}^3/\text{tr}\)
Calcul :
\[ \begin{aligned} N_{\text{th}} &= \frac{0.060 \, \text{m}^3/\text{min}}{50 \times 10^{-6} \, \text{m}^3/\text{tr}} \\ &= 1200 \, \text{tr/min} \end{aligned} \]
Résultat Question 3 : La vitesse de rotation théorique est de \(N_{\text{th}} = 1200 \, \text{tr/min}\).

Question 4 : Calcul de la Vitesse de Rotation Réelle (\(N_{\text{réel}}\))

Principe :

La vitesse de rotation réelle est inférieure à la vitesse théorique à cause des fuites internes (le fluide qui passe de l'entrée à la sortie sans produire de travail). Le rendement volumétrique (\(\eta_v\)) quantifie ces pertes. La vitesse réelle est le produit de la vitesse théorique et de ce rendement.

Formule(s) utilisée(s) :
\[ N_{\text{réel}} = N_{\text{th}} \cdot \eta_v \]
Calcul :
\[ \begin{aligned} N_{\text{réel}} &= 1200 \, \text{tr/min} \times 0.95 \\ &= 1140 \, \text{tr/min} \end{aligned} \]
Résultat Question 4 : La vitesse de rotation réelle de l'arbre est de \(1140 \, \text{tr/min}\).
Détermination du Couple et de la Vitesse d'un Moteur Hydraulique - Exercice d'Application

D’autres exercices d’oléohydraulique:

0 commentaires
Soumettre un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *